
www.umbc.eduAll materials copyright UMBC unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 01 – Introduction

www.umbc.edu

Introductions

• Dr. Katherine Gibson

– Education

• BS in Computer Science, UMBC

• MS & PhD in CS, University of Pennsylvania

– Likes

• Video games

• Dogs

• Nail polish

2

www.umbc.edu

Introductions

• Prof. Michael Neary

– Education

• BS in Computer Science, UMBC

• MS in Computer Science, UMBC (in progress)

• PhD in Computer Science, somewhere (eventually)

– Likes
• Chocolate

• Broadway

• Improv
3

www.umbc.edu

Introductions

• Dr. Penny Rheingans

– Education

• AB in Computer Science, Harvard

• PhD in Computer Science, UNC

– Likes

• Cheese

• College sports

• Data visualization

4

www.umbc.edu

Introductions

• Dr. Krystle Wilson

– Education

• MS, PhD in Computer Science

Mississippi State University

– Likes

• Teen Titans Go!

• Sports

5

www.umbc.edu6

Course Overview

www.umbc.edu

Course Information

• First course in the CMSC intro sequence

– Followed by CMSC 202

• CMCS majors must get a B or better

• CMPE majors must get a B or better

– Unless you entered UMBC prior to Fall 2016

• No prior programming experience needed

– Some may have it

7

www.umbc.edu

What the Course is About

• Introduction to Computer Science

– Problem solving and computer programming

• We’re going to come up with algorithmic
solutions to problems

– What is an algorithm?

• We will communicate our algorithms to
computers using the Python language

8

www.umbc.edu

Class Objectives

• By the end of this class, you will be able to:

– Use an algorithmic approach to solve
computational problems

– Break down complex problems into simpler ones

– Write and debug programs in the Python
programming language

– Be comfortable with the UNIX environment

9

www.umbc.edu

Why Learn to Program?

• Programming skills are useful across a wide
range of fields and applications

– Many scientific professions utilize programming

– Programming skills allow you to understand and
exploit “big data”

– Logical thinking learned from programming
transfers to many other domains

10

www.umbc.edu

Grading Scheme
• This class has:

– 8 Homeworks (40 points each)

• Small programming assignments

– 2 Projects (80 points each)

• Larger programming assignments

– 10 lab assignments (10 points each)

– 4 mandatory surveys (5 points each)

– A midterm (200 points)

– A comprehensive final exam (200 points)

11

www.umbc.edu

A Note on Labs

• Your “discussion” section is actually a lab

– In the Engineer building (ENG)

• Labs are worth 10% of your grade

• You must attend your assigned section

– No credit for attending other sections

12

www.umbc.edu

Submission and Late Policy

• Homeworks and projects will be submitted over
the GL server with the submit command

• Homeworks will always be due at 8:59:59 pm

• Late homeworks will receive a zero

• (In other words, there are no late homeworks)

13

www.umbc.edu

Submission and Late Policy

• It is not recommended that you submit close
to the deadline

– Sometimes the server gets overloaded
with everyone trying to submit

–Developing programs can be tricky
and unpredictable

• Start early and submit early (and often!)

14

www.umbc.edu15

Academic Integrity

www.umbc.edu

Academic Integrity

• We have homeworks and projects in this class

• You should never, ever, ever submit work done by
someone else as your own

• If you submit someone else’s code, both
students will get a 0 on the assignment

16

www.umbc.edu

Things to Avoid

• Downloading or obtaining anyone else’s work

• Copying and pasting another person’s code

• Leaving your computer logged in where
another student can access it

• Giving your code to another student

– Or explaining it in explicit detail to another student

• Attempting to buy code online

– This will result in an immediate F in the class
17

www.umbc.edu

Things that are Always Okay

• And encouraged!

• Talking to a classmate about a concept

• Getting help from a TA or instructor

• Comparing program output

• Discussing how to test your program

• Working on practice problems together

18

www.umbc.edu

Collaboration Policy

• We want you to learn all these things:

– The course material

– How to work independently

– How to work collaboratively

• Some assignments will be “individual work”
while others will be “collaboration allowed”

– These will be clearly marked on each assignment

– You may only collaborate with current 201 students
19

www.umbc.edu

What Is Allowed?
Action Allowed for

Individual Work
Allowed when
Collaborating

Getting help from an instructor or TA Allowed Allowed

Brainstorming general solutions to the assignment Not Allowed Allowed

Creating, sharing, or copying course notes Allowed Allowed

Purchasing solutions Not Allowed Not Allowed

Borrowing verbatim from the course slides or book Allowed Allowed

Giving (or receiving) a detailed explanation of a
solution

Not Allowed Not Allowed

Looking for solutions or help online Not Allowed Not Allowed

Looking at someone else’s code It Depends It Depends

20

www.umbc.edu

What Is Allowed?
Action Allowed for

Individual Work
Allowed when
Collaborating

Getting help from an instructor or TA Allowed Allowed

Brainstorming general solutions to the assignment Not Allowed Allowed

Creating, sharing, or copying course notes Allowed Allowed

Purchasing solutions Not Allowed Not Allowed

Borrowing verbatim from the course slides or book Allowed Allowed

Giving (or receiving) a detailed explanation of a
solution

Not Allowed Not Allowed

Looking for solutions or help online Not Allowed Not Allowed

Looking at someone else’s code It Depends It Depends

21

www.umbc.edu

What Is Allowed?
Action Allowed for

Individual Work
Allowed when
Collaborating

Getting help from an instructor or TA Allowed Allowed

Brainstorming general solutions to the assignment Not Allowed Allowed

Creating, sharing, or copying course notes Allowed Allowed

Purchasing solutions Not Allowed Not Allowed

Borrowing verbatim from the course slides or book Allowed Allowed

Giving (or receiving) a detailed explanation of a
solution

Not Allowed Not Allowed

Looking for solutions or help online Not Allowed Not Allowed

Looking at someone else’s code It Depends It Depends

22

You may never look at someone else’s code without their permission
You may never look at someone else’s code on your computer

When collaborating, you may look at someone else’s code on their
screen and with their permission
When working individually, you may not look at anyone else’s code

www.umbc.edu

Acknowledging Collaboration

• In every file you turn in for this course, you
must have a line near the top of your file
stating one of the following three things:

1.Collaboration was not allowed

on this assignment

– On assignments where collaboration was not
allowed, you must acknowledge this.

23

www.umbc.edu

Acknowledging Collaboration

2.I did not collaborate with

anyone on this assignment part

– If you did not work with anyone on the part of the
assignment the header comment is located in, you
must clearly state this.

– Getting help from a TA or instructor does not
count as collaboration.

24

www.umbc.edu

Acknowledging Collaboration
3. I collaborated with Fox Mulder (fmulder1@umbc.edu);

I helped him understand the loop.

I collaborated with Dana Scully (scully18@umbc.edu);

we helped each other with debugging.

– If you worked with anyone on the part of the
assignment the header comment is located in, you
must state their name and UMBC email, and give a
brief description of what the collaboration was.

– Both students need to note this collaboration in their
header comment.

25

www.umbc.edu

Why So Much About Cheating?

• Every semester, around 20 students get caught
sharing code. Typically, they are stressed,
confused, and just wanted to take a shortcut or
help a friend. These students endanger their
entire academic career when they get caught.

• If you feel like you can't possibly finish a project
or homework on your own, contact someone in
the course staff for help.

26

www.umbc.edu

Becoming a Good Programmer

• We are strict about academic integrity because
we want everyone to succeed in this class

• Understanding the assignment solutions
means you will do better on the exams

• Learning the course material means you will
do better in your future courses and career

• Seeking help when you need it will help you
grow as a student and as a computer scientist

27

www.umbc.edu28

Getting Help

www.umbc.edu

Where to Go for Help

• There are a number of places you can go if you
are struggling!

– All of the TAs happy to help

– If the TAs aren't working out, come by the
instructors’ office hours (this should not be your
first resort for help)

• All office hours will be posted on the website

29

www.umbc.edu

CMSC 201 TAs

• You are welcome to go to ITE 240 whenever
any TA is available to get additional help

• We highly encourage going to them if you
have any questions regarding assignments

• The final schedule will be posted later, but
there should be a TA in ITE 240 from 10 to 5
Monday-Thursday and a few hours on Friday

30

www.umbc.edu

ITE 240

• This is a computer lab in the ITE building used
to hold 201, 202, and 341 office hours

• The 201 TAs will…

– Be wearing bright yellow lanyards

– Have their names on the whiteboard in the front

31

www.umbc.edu

Additional Help

• Tutoring from the Learning Resources Center

–By appointment

• Computer help from DoIT

–By phone or in person

• See the syllabus for more info

32

www.umbc.edu

Announcement: Note Taker Needed
A peer note taker has been requested for this class. A peer note taker
is a volunteer student who provides a copy of his or her notes for each
class session to another member of the class who has been deemed
eligible for this service based on a disability. Peer note takers will be
paid a stipend for their service.

Peer note taking is not a part time job but rather a volunteer service
for which enrolled students can earn a stipend for sharing the notes
they are already taking for themselves.

If you are interested in serving in this important role, please fill out a
note taker application on the Student Disability Services website or in
person in the SDS office in Math/Psychology 212.

33

www.umbc.edu

UMBC Computing Environment

• We develop our programs on UMBC’s GL
system

–GL is running the Linux Operating System

• GUI – Graphical User Interface

• CLI – Command-Line Interface

• Lab 1 will walk you through using the
UMBC computing environment

34

www.umbc.edu

How Do I Connect to GL?

• Windows
– Download Putty (Lab 1

has a video about this)

– Hostname:

gl.umbc.edu

– Make sure you pick “SSH”

– Put in username and
password

35

• Mac
− SSH client is already installed
− Go to the Application folder

and select Utilities
− Open up a terminal window
− Enter the following:

ssh -l username

gl.umbc.edu

− Put in your password

You won’t see any asterisks appear when you type in
your password, but it is working!

www.umbc.edu

Linux Commands

• See: http://www.csee.umbc.edu/resources/
computer-science-help-center/#Resources

• Here’s a few basic commands:

ls – list contents

– List files and directories in your current directory

– Directory is just another word for folder

36

http://www.csee.umbc.edu/resources/computer-science-help-center/#Resources

www.umbc.edu

More Basic Commands

• Important!! Commands are case sensitive

cd NAME – change directory

cd .. – go to parent directory

cd . – stay in current directory

mkdir NAME – make a new directory

37

www.umbc.edu

Directories

38

/afs/umbc.edu/users/ /home

- When you log into GL,
you will be in your home
directory

- Use the cd command to
go to subdirectories

- How do you get to HW1?

(will be different
for each person)

first/second/username

201 otherClass

lab1

lab1.py

HW1

www.umbc.edu

emacs – A Text Editor

• Will use emacs to write our python code

• emacs is CLI, not GUI

– Need to use keyboard shortcuts to do things

• Reference:

– http://www.csee.umbc.edu/summary-of-basic-
emacs-commands/

39

http://www.csee.umbc.edu/summary-of-basic-emacs-commands/

www.umbc.edu

Keyboard Shortcuts for emacs

• To open a file (new or old)
emacs filename_goes_here.txt

• To save a file

CTRL+X then CTRL+S

• To save and close a file

CTRL+X then CTRL+C

• To undo

CTRL+_ (that “CTRL + Shift + -” for underscore)

40

www.umbc.edu41

Computers and Programs

www.umbc.edu

Today’s Objectives

• To understand how data is represented
and stored in memory

• To be aware of elements of the UMBC
computing environment

• To start thinking algorithmically

42

www.umbc.edu

Binary Numbers

• Computers store all information (code, text,
images, sound,) as a binary representation

– “Binary” means only two parts: 0 and 1

• Specific formats for each file help the
computer know what type of item/object it is

• But why use binary?

43

www.umbc.edu

Decimal vs Binary

• Why do we use decimal numbers?

– Ones, tens, hundreds, thousands, etc.

• But computers don’t have fingers…

– What do they have instead?

• They only have two states: “on” and “off”

44

www.umbc.edu

Decimal Example

• How do we represent a number like 50,932?

45

5

104

0

103

9

102

3

101

2

100

Decimal uses 10 digits, so…

2 x 100 = 2

3 x 101 = 30

9 x 102 = 900

0 x 103 = 0000

5 x 104 = 50000

Total: 50932

www.umbc.edu

Another Decimal Example

46

6 7 4 9 3

104 103 102 101 100

10000 1000 100 10 1

60000 7000 400 90 3

60000+7000+400+90+3 = 67493

www.umbc.edu

Binary Example

• Let’s do the same with 10110 in binary

47

1

24

0

23

1

22

1

21

0

20

Binary uses 2 digits, so our base isn’t 10, but…

0 x 20 = 0

1 x 21 = 2

1 x 22 = 4

0 x 23 = 0

1 x 24 = 16

--

Total: 22

www.umbc.edu

Binary to Decimal Conversion

48

• Step 1: Draw Conversion Box
• Step 2: Enter Binary Number
• Step 3: Multiply
• Step 4: Add

29 28 27 26 25 24 23 22 21 20

512 256 128 64 32 16 8 4 2 1

1 0 1 0 0 0 1 1 0 1

512 0 128 0 0 0 8 4 0 1

512 + 0 + 128 + 0 + 0 + 0 + 8 + 4 + 0 + 1 = 653

www.umbc.edu

Decimal to Binary Conversion

49

• Step 1: Draw Conversion Box
• Step 2: Compare decimal to highest binary value
• Step 3: If binary value is smaller, put a 1 there and

subtract the value from the decimal number
• Step 4: Repeat until 0

29 28 27 26 25 24 23 22 21 20

512 256 128 64 32 16 8 4 2 1

Convert 643 to binary

643-512 = 131 131-128 = 3 3-2=1 1-1=0

1 0 1 0 0 0 0 0 1 1

www.umbc.edu

Exercise: Converting From Binary

• What are the decimals equivalents of…

101

1111

100000

101010

1000 0000

(Longer binary numbers are often broken
into blocks of four digits for readability.)

50

www.umbc.edu

Exercise: Converting From Binary

51

• What are the decimals equivalents of…

101 = 4+0+1 = 5

1111 = 8+4+2+1 = 15

100000 = 32+0+0+0+0+0 = 32

101010 = 32+0+8+0+2+0 = 42

1000 0000 = 128+...+0+0 = 128

(Longer binary numbers are often broken
into blocks of four digits for readability.)

www.umbc.edu

Converting to Binary

• What are the binary equivalents of…

9

27

68

1000

52

www.umbc.edu

Converting to Binary

• What are the binary equivalents of…

9 = 1001 (or 8+1)

27 = 0001 1011 (or 16+8+2+1)

68 = 0100 0100 (or 64+4)

1000 = 0011 1110 1000

(or 512+256+128+64+32+8)

53

www.umbc.edu

“Levels” of Languages

• Machine Code (lowest level)

– Code that the computer can directly execute

– Binary (0 or 1)

• Low Level Language

– Interacts with the hardware of the computer

– Assembly language

• High Level Language

– Compiled or interpreted into machine code

– Java, C++, Python

54

www.umbc.edu

Compilation vs Interpretation

• Compiler

– A complex computer program that takes another
program and translates it into machine language

– Compilation takes longer, but programs run faster

• Interpreter

– Simulates a computer that can understand a high
level language

– Allows programming “on the fly”

55

www.umbc.edu

Algorithmic Thinking

• Algorithms are an ordered set of clear steps
that fully describes a process

• Examples from real life?

– Recipes

– Driving directions

– Instruction manual (IKEA)

56

www.umbc.edu

Exercise: PB&J Algorithm

• English speaking aliens are visiting Earth for
the first time. They want to know how to
make a peanut butter and jelly sandwich.

• Explicitly, what are the required steps for
building a peanut butter and jelly sandwich?

57

www.umbc.edu

Announcements

• Lab 1 this week is an online lab

• In-person labs won’t begin until the
week after Labor Day

• Make sure to log into the course Blackboard

– Let us know if you have any problems

– (Students on the waitlist may not have access yet)

58

